a2+b2=1+1+2cos(x−y)=4cos2x−y2
a = 2 sin(x+y2)cos(x−y2)
∴4a2=16sin2(x+y2)cos2(x−y2)
∴(a2+b2)2−4a2=16cos2(x−y2)
[cos2(x+y2)−sin2(x+y2)]
=16cos2(x+y2)cosxcosy
again 2ab = sin 2x + sin 2y + 2sin( x + y )
= 2sin (x + y ) cos (x - y ) + 2 sin (x + y )
= 2sin (x + y ) [2cos2(x−y2)]
Dividing (2) and (3)
(a2+b2)2−4a22ab=4cosxcosysin(x+y)=4c
∵sin(x+y)cosxcosy=c
From the third given relation