wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Eliminate x,y from the equations ax2+by2=ax+by=xyx+y=c.

Open in App
Solution

We have
c(ax2+by2)=c2=(ax+by)2
a(ac)x2+2abxy+b(bc)y2=01
(ax+by)(x+y)=xy;
ax2+(a+b1)xy+by2=02
From 1 & 2 by cross multiplication
=x2b{2ab(bc)(a+b1)}=xyab(ab)=y2a{(ac)(a+b1)2ab}
{2ab(bc)(a+b1)}{(ac)(a+b1)2ab}=ab(ab)2;
2ab(a+b1)(a+b2c)4a2b2(ac)(bc)(a+b1)=ab(ab)2
2ab(a+b)(a+b1)4abc(a+b1)4a2b2ab(a+b1)2+c(a+b)(a+b1)2c2(a+b1)2=ab(ab)2
Where by arranging according to powers of 'c', we have
ab(a+b1)(a+b1)+c(a+b1){(ab)2(a+b)}c2(a+b1)2=ab(ab)2
i.e, c2(a+b1)2c(a+b1){(ab)2(a+b)}+ab=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theorems for Differentiability
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon