We have
c(ax2+by2)=c2=−(ax+by)2
∴a(a−c)x2+2abxy+b(b−c)y2=0⟶1
(ax+by)(x+y)=xy;
∴ax2+(a+b−1)xy+by2=0⟶2
From 1 & 2 by cross multiplication
=x2b{2ab−(b−c)(a+b−1)}=xy−ab(a−b)=y2a{(a−c)(a+b−1)−2ab}
∴{2ab−(b−c)(a+b−1)}{(a−c)(a+b−1)−2ab}=ab(a−b)2;
∴2ab(a+b−1)(a+b−2c)−4a2b2−(a−c)(b−c)(a+b−1)=ab(a−b)2
∴2ab(a+b)(a+b−1)−4abc(a+b−1)−4a2b2−ab(a+b−1)2+c(a+b)(a+b−1)2−c2(a+b−1)2=ab(a−b)2
Where by arranging according to powers of 'c', we have
ab(a+b−1)(a+b−1)+c(a+b−1){(a−b)2−(a+b)}−c2(a+b−1)2=ab(a−b)2
i.e, c2(a+b−1)2−c(a+b−1){(a−b)2−(a+b)}+ab=0