xy+yz+zx=axz+yx+zy=bab=(xy+yz+zx)(xz+yx+zy)ab=x2yz+1+xzy2+yxz2+y2zx+1+1+zyx2+z2xyab=x2yz+y2zx+z2xy+zyx2+xzy2+yxz2+3ab=∑x2yz+∑z2xy+3........(i)
(xy+yz)(yz+zx)(zx+xy)=c(xz+zy+y2z2+yx)(zx+xy)=c1+x2zy+z2xy+zxy2+y2zx+xyz2+yzx2+1=cx2zy+y2zx+z2xy+yzx2+zxy2+xyz2+2=c∑x2zy+∑yzx2+2=c∑x2zy+∑yzx2=c−2
substituting in (i)
⇒ab=c−2+3⇒ab=c+1