Just transform the equations, to eliminate
x,y,zx=by+cz+du
x+ax=by+cz+du+ax...... (i)
y=cz+du+ax
y+by=cz+du+ax+by ...... (ii)
z=du+ax+by
z+cz=du+ax+by+cz...... (iii)
u=ax+by+cz
u+du=ax+by+cz+du...... (iv)
Let k=ax+by+cz+du
x(1+a)=k ........ [From (i)]
ax=ak1+a
Similarly, we get
by=bk1+b ........ [From (ii)]
cz=ck1+c ........ [From (iii)]
du=dk1+d ........ [From (iv)]
Add these equations, we get
ax+by+cz+du=k(a1+a+b1+b+c1+c+d1+d)
⇒k=k(a1+a+b1+b+c1+c+d1+d)
Therefore, a1+a+b1+b+c1+c+d1+d=1