1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Standard Formulae - 1
Differentiate...
Question
Differentiate the following functions from first principles:
(i)
e
cot
x
(ii) x
2
e
x
(iii) log cosec x
(iv) sin
−1
(2x + 3)
Open in App
Solution
i
Let
f
x
=
e
cot
x
⇒
f
x
+
h
=
e
cot
x
+
h
∴
d
d
x
f
x
=
lim
h
→
0
f
x
+
h
-
f
x
h
=
lim
h
→
0
e
cot
x
+
h
-
e
cot
x
h
=
lim
h
→
0
e
cot
x
e
cot
x
+
h
-
cot
x
-
1
h
=
e
cot
x
lim
h
→
0
e
cot
x
+
h
-
cot
x
-
1
cot
x
+
h
-
cot
x
×
cot
x
+
h
-
cot
x
h
=
e
cot
x
lim
h
→
0
cot
x
+
h
-
cot
x
h
×
cot
x
+
h
+
cot
x
cot
x
+
h
+
cot
x
∵
lim
x
→
0
e
x
-
1
x
=
1
and
rationalizing
the
numerator
=
e
cot
x
lim
h
→
0
cot
x
+
h
-
cot
x
h
cot
x
+
h
+
cot
x
=
e
cot
x
lim
h
→
0
cot
x
+
h
cot
x
+
1
cot
x
-
x
-
h
h
cot
x
+
h
+
cot
x
∵
cot
A
-
B
=
cot
A
cot
B
+
1
cot
B
-
cot
A
=
e
cot
x
lim
h
→
0
cot
x
+
h
cot
x
+
1
cot
-
h
×
h
cot
x
+
h
+
cot
x
=
-
e
cot
x
lim
h
→
0
cot
x
+
h
cot
x
+
1
h
tan
h
cot
x
+
h
+
cot
x
=
e
cot
x
×
cot
2
x
+
1
2
cot
x
∵
lim
x
→
0
tan
x
x
=
1
=
-
e
cot
x
×
cosec
2
x
2
cot
x
∵
1
+
cot
2
x
=
cosec
2
x
∴
d
d
x
e
c
o
t
x
=
-
e
cot
x
×
cosec
2
x
2
cot
x
i
i
Let
f
x
=
x
2
e
x
⇒
f
x
+
h
=
x
+
h
2
e
x
+
h
=
lim
h
→
0
f
x
+
h
-
f
x
h
=
lim
h
→
0
x
+
h
2
e
x
+
h
-
x
2
e
x
h
=
lim
h
→
0
x
2
e
x
+
h
-
x
2
e
x
h
+
2
x
h
e
x
+
h
h
+
h
2
e
x
+
h
h
=
lim
h
→
0
x
2
e
x
e
x
+
h
-
x
-
1
h
+
2
x
e
x
+
h
+
h
e
x
+
h
=
lim
h
→
0
x
2
e
x
e
h
-
1
h
+
2
x
e
x
+
h
+
h
e
x
+
h
=
x
2
e
x
+
2
x
e
x
+
0
x
e
x
∵
lim
x
→
0
e
x
-
1
x
=
1
∴
d
d
x
x
2
e
x
=
e
x
x
2
+
2
x
i
i
i
Let
f
x
=
log
cosec
x
⇒
f
x
+
h
=
log
cosec
x
+
h
∴
d
d
x
f
x
=
lim
h
→
0
f
x
+
h
-
f
x
h
=
lim
h
→
0
log
cosec
x
+
h
-
log
cosec
x
h
=
lim
h
→
0
log
cosec
x
+
h
cosec
x
h
=
lim
h
→
0
log
1
+
sin
x
sin
x
+
h
-
1
h
=
lim
h
→
0
log
1
+
sin
x
-
sin
x
+
h
sin
x
+
h
sin
x
-
sin
x
+
h
sin
x
+
h
sin
x
-
sin
x
+
h
sin
x
+
h
h
=
lim
h
→
0
2
cos
x
+
x
+
h
2
sin
x
-
x
-
h
2
sin
x
+
h
h
∵
lim
x
→
0
log
1
+
x
x
=
1
and
sin
A
-
sin
B
=
2
cos
A
+
B
2
sin
A
-
B
2
=
lim
h
→
0
2
cos
2
x
+
h
2
sin
x
+
h
-
2
sin
-
h
2
-
h
2
∵
lim
x
→
0
sin
x
x
=
1
=
-
cot
x
∴
d
d
x
log
cosec
x
=
-
cot
x
i
v
Let
f
x
=
sin
-
1
2
x
+
3
⇒
f
x
+
h
=
sin
-
1
2
x
+
h
+
3
⇒
f
x
+
h
=
sin
-
1
2
x
+
2
h
+
3
∴
d
d
x
f
x
=
lim
h
→
0
f
x
+
h
-
f
x
h
=
lim
h
→
0
sin
-
1
2
x
+
2
h
+
3
-
sin
-
1
2
x
+
3
h
=
lim
h
→
0
sin
-
1
2
x
+
2
h
+
3
1
-
2
x
+
3
2
-
2
x
+
3
1
-
2
x
+
2
h
+
3
2
h
∵
sin
-
1
x
-
sin
-
1
y
=
sin
-
1
x
1
-
y
2
-
y
1
-
x
2
=
lim
h
→
0
sin
-
1
z
z
×
z
h
where
,
z
=
2
x
+
2
h
+
3
1
-
2
x
+
3
2
-
2
x
+
3
1
-
2
x
+
2
h
+
3
2
and
lim
h
→
0
sin
-
1
h
h
=
1
=
lim
h
→
0
z
h
=
lim
h
→
0
2
x
+
2
h
+
3
1
-
2
x
+
3
2
-
2
x
+
3
1
-
2
x
+
2
h
+
3
2
h
=
lim
h
→
0
2
x
+
2
h
+
3
2
1
-
2
x
+
3
2
-
2
x
+
3
2
1
-
2
x
+
2
h
+
3
2
h
2
x
+
2
h
+
3
1
-
2
x
+
3
2
+
2
x
+
3
1
-
2
x
+
2
h
+
3
2
Rationalizing
numerator
=
lim
h
→
0
2
x
+
3
2
+
4
h
2
+
4
h
2
x
+
3
1
-
2
x
+
3
2
-
2
x
+
3
2
1
-
2
x
+
3
2
-
4
h
2
-
4
h
2
x
+
3
h
2
x
+
2
h
+
3
1
-
2
x
+
3
2
+
2
x
+
3
1
-
2
x
+
2
h
+
3
2
=
lim
h
→
0
2
x
+
3
2
+
4
h
2
+
4
h
2
x
+
3
-
2
x
+
3
4
-
4
h
2
2
x
+
3
2
-
4
h
2
x
+
3
3
-
2
x
+
3
2
+
2
x
+
3
4
+
4
h
2
2
x
+
3
2
+
4
h
2
x
+
3
3
h
2
x
+
2
h
+
3
1
-
2
x
+
3
2
+
2
x
+
3
1
-
2
x
+
2
h
+
3
2
=
lim
h
→
0
4
h
h
+
2
x
+
3
h
2
x
+
2
h
+
3
1
-
2
x
+
3
2
+
2
x
+
3
1
-
2
x
+
2
h
+
3
2
=
4
2
x
+
3
2
x
+
3
1
-
2
x
+
3
2
+
2
x
+
3
1
-
2
x
+
3
2
=
4
2
x
+
3
2
2
x
+
3
1
-
2
x
+
3
2
=
2
1
-
2
x
+
3
2
∴
d
d
x
sin
-
1
2
x
+
3
=
2
1
-
2
x
+
3
2
Suggest Corrections
0
Similar questions
Q.
Differentiate the following functions from first principles:
(i)
e
cot
x
(ii) x
2
e
x
(iii) log cosec x
(iv) sin
−1
(2x + 3)
Q.
Differentiate each of the following from first principles:
(
i
)
s
i
n
√
2
x
(
i
i
)
c
o
s
√
x
(
i
i
i
)
t
a
n
√
x
(
i
v
)
t
a
n
x
2
Q.
Differentiate each of the following from first principles:
(i) -x
(ii)
(
−
x
)
−
1
(iii) sin (x+1)
(iv)
c
o
s
(
x
−
π
8
)
Q.
Differentiate each of the following from first principles:
(i) e
−
x
(ii) e
3x
(iii) e
ax
+ b
(iv) x e
x
(v) − x
(vi) (−x)
−1
(vii) sin (x + 1)
(viii)
cos
x
-
π
8
(ix) x sin x
(x) x cos x
(xi) sin (2x − 3)
Q.
Differentiate the following functions from first principles:
log cosec
x
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Standard Formulae 1
MATHEMATICS
Watch in App
Explore more
Standard Formulae - 1
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app