Enter 1 for True and 0 for False ∫(x+3)√3−4x−x2dx=−13(3−4x−x2)3/2+(x+2)√3−4x−x22+72sin−1(x+2)√7+C
Open in App
Solution
∫(x+3)√3−4x−x2dx =−12∫(−2x−6)√3−4x−x2dx =−12∫(−2x−4)√3−4x−x2dx+∫√3−4x−x2dx Put t=3−4x−x2 in the first integral. ⇒dt=−4−2x =−12∫√tdt+∫√7−(4x+x2+4)dx =−13t3/2+∫√(√7)2−(x+2)2dx =−13(3−4x−x2)3/2+(x+2)√3−4x−x22+72sin−1(x+2)√7+C