The correct option is B One real roots in (e,π) and other in (π,π+e)
f(x)=πex−e+eπx−π+ππ+eex−π−e=0
=πe(x−π)(x−π−e)+eπ(x−e)(x−π−e)+(ππ+ee)(x−e)(x−π)(x−e)(x−π)(x−π−e)=0
=πe(x−π)(x−π−e)+eπ(x−e)(x−π−e)+(ππ+ee)(x−e)(x−π)=0
f(e)=πe(e−π)(−π)=πe+1(π−e)
f(π)=eπ(π−e)−e=−eπ+1(π−e)
f(π+e)=(ππ+ee)(π)(e)
clearly
e<π<π+e
Hence
f(e)>0,f(π)<0,f(π+e)>0
∴f(x)hasonerealroot(e,π)andother(π,π+e)