Equation 6sin2Θ−5sinΘ+1=0 is satisfied by
Consider the given equation,
6sin2θ−5sinθ+1=0
Let,x=sinθ
6x2−5x+1=0
6x2−3x−2x+1=0
3x(2x−1)−1(2x−1)=0
(2x−1)(3x−1)=0
Now,
(2sinθ−1)(3sinθ−1)=0
When,
3sinθ−1=0
sinθ=13
θ=sin−1(13)
When,
2sinθ−1=0
sinθ=12
θ=π6
Hence, this is the answer.