wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Equation of a plane parallel to the vectors 2^i+^j+^k,^i+2^j+3^k and passing through the point ^i+2^j+^k is

A
(x1)^i+(y2)^j+(z1)^k=λ(2^i+^j+^k)+μ(^i+2^j+3^k)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(x2)^i+(y2)^j+(z1)^k=λ(^i+2^j+^k)+μ(^i+2^j+3^k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(x+1)^i+(y+2)^j+(z+1)^k=λ(2^i+^j+^k)+μ(^i+2^j+^k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(x1)^i+(y+2)^j+(^z+1)^k=λ(2^i+^j+^k)+μ(^i+2^j+^k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A (x1)^i+(y2)^j+(z1)^k=λ(2^i+^j+^k)+μ(^i+2^j+3^k)
Parallel vectors are 2^i+^j+^k and ^i+2^j+3^k
Equation passing through the point ^i+2^j+^k
So equation of plane parallel to the vectors and passing through the point is ^r=^i+2^j+^k+μ(2^i+^j+^k)+λ(^i+2^j+3^k)
(x1)^i+(y2)^j+(z1)^k=(2μ+λ)^i+(μ+2λ)^j+(μ+3λ)^k

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Equation of a Plane - Normal Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon