wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Equation of a straight line passing through the point of intersection of xāˆ’y+1=0 and 3x+yāˆ’5=0 and perpendicular to one of them is

A
x+y+3=0
No worries! Weā€˜ve got your back. Try BYJUā€˜S free classes today!
B
x+y3=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
x3y5=0
No worries! Weā€˜ve got your back. Try BYJUā€˜S free classes today!
D
x3y+5=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
A x3y+5=0
B x+y3=0
Given Lines
xy+1=0------(1)
3x+y5=0------(2)
from eq (1)
y=x+1
putting y in eq (2)
3x+x+15=0
4x=4
x=1
then y=2
Point of intersection be P(1,2)
now, slope of new lines to given line would be m1=1
(as it is -ve reciprocal)
m2=13
Hence eq are
x+y=3 (m1=1)
and
x3y+5=0 (m2=13)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon