Let (h,k) be the centre of the circle
equation of circle : (x−h)2+(y−k)2=r2−−−(1)
where r=radius of ncircle
∴ the circle touches x−axis
∴ It should pass through (h,o) when it touches the x−axis and radius r=k
∴ from (1), (x−h)2+(y−k)2=k2−−−−(2)
∵ Circle pass through (1,2) and (3,−4)
∴ (1−h)2+(−2−4)2=42
or, 1−2h+h2+4+4k+k2=42
or, h^2-2h+4h+5=0---(3)$
and (3−h)2+(−4−k)2=42
or, 9−6h+h2+16+84+42=k2
lor, h2−−6h+84+9=0−−−−(4)
Multiplying (3) by (2) and solving by (3)−(4)
2h2−4h+8k+10−h2−6h−84−9=0
or, h2+2h+1=0
or, (h+1)2=0 ⇒ h=1
from (4),(1)2−6(1)+84+9=0⇒1−6+9+8k=0
⇒ 84=−4
∴ 4=−1/2
∴ From (2)
(x−1)2+(y+1/2)2=14
or, x2−2x+1+y2+y+14=14
or, x2+y2−2x+y=0.⇒Required equation of circle.