The correct option is
A x2+y2−20x+15y=0As given in the problem, we have to find point of intersection of circle and a line.
Equation of circle is given by,
x2+y2−2x+4y−20=0 Equation (1)
Equation of line is given by,
x+y−1=0
∴y=1−x
Put this value in equation (1), we get,
x2+(1−x)2−2x+4(1−x)−20=0
∴x2+1−2x+x2−2x+4−4x−20=0
∴2x2−8x−15=0
∴x=−(−8)±√(−8)2−4×2×(−15)2×2
∴x=8±√64+1204
∴x=8±√1844
∴x=8±√4×464
∴x=8±2√464
∴x=4±√462
∴x=4+√462 and ∴x=4−√462
When x=4+√462, y=1−4+√462
∴y=2−(4+√46)2
∴y=−2−√462
When x=4−√462, y=1−4−√462
∴y=2−(4−√46)2
∴y=−2+√462
Thus, Points of intersection of circle with line are A(4+√462,−2−√462) and B(4−√462,−2+√462)
Now as given in the problem, we have to find equation of circle passing through these points and origin C(0,0)
Let equation of this circle is x2+y2+2gx+2fy+c=0
As point A lies on this circle, it must satisfy equation of circle.
∴(4+√462)2+(−2−√462)2+2g(4+√462)+2f(−2−√462)+c=0
∴16+8√46+464+4+4√46+464+g(4+√46)+f(−2−√46)+c=0
∴20+12√46+924+g(4+√46)−f(2+√46)+c=0
∴5+3√46+23+g(4+√46)−f(2+√46)+c=0
∴c=−5−3√46−23−g(4+√46)+f(2+√46) Equation (1)
Also, point B lies on circle and must satisfy equation of circle
∴(4−√462)2+(−2+√462)2+2g(4−√462)+2f(−2+√462)+c=0
∴16−8√46+464+4−4√46+464+g(4−√46)+f(−2+√46)+c=0
∴20−12√46+924+g(4−√46)+f(−2+√46)+c=0
∴5−3√46+23+g(4−√46)+f(−2+√46)+c=0
∴c=−5+3√46−23−g(4−√46)−f(−2+√46) Equation (2)
From equation (1) an (2), we get,
5−3√46−23−g(4+√46)+f(2+√46)=5+3√46−23−g(4−√46)−f(−2+√46)
∴−3√46−4g−g√46+2f+f√46=3√46−4g+g√46+2f−f√46
∴2g√46−2f√46=−6√46
∴g−f=−3
∴g=f−3 Equation (3)
Similarly, origin O(0,0) also lies on the same circle. Thus, it must satisfy the equation of circle.
∴(0)2+(0)2+2g(0)+2f(0)+c=0
∴c=0
Thus, from equation (1),
−5−3√46−23−(f−3)(4+√46)+f(2+√46)=0
∴−5−3√46−23−(4f+√46f−12−3√46)+2f+f√46=0
∴−5−3√46−23−4f−√46f+12+3√46+2f+f√46=0
∴2f=−16
∴f=−8
Put this value in equation (3), we get,
g=−8−3
g=−11
Thus, equation of circle is given by,
x2+y2+2(−11)x+2(−8)y=0
∴x2+y2−22x−16y=0
Thus, answer is option (C)