A) 2x+3y−1=0⇒2x+3y=1 ...(1)
x2+y2=5⇒x2+y2=5(1)2
Substituting value of from (1), we get
x2+y2=5(2x+3y)2⇒19x2+60xy+44y2=0
B) x+y+1=0⇒(x+y)=−1 ...(2)
x2+y2−2x+2y+1=0⇒x2+y2−2(x−y)(−1)+1(−1)2=0
Substituting value of -1 from (2), we get
x2+y2−2(x−y)(x+y)+(x+y)2=0⇒xy+2y2=0
C) x−y=1 ...(3)
xy=4⇒xy=4(1)2
Substituting value of 1 from (3) we get
xy=4(x−y)2⇒4x2−9xy+4y2=0
D) x=α⇒xα=1 ...(4)
y2=4αx⇒y2=4αx(1)
Substituting value of 1 from (4), we get
y2=4ax(xα)⇒4x2−y2=0