Equation of the plane passing through a point with position vector ^i+^j−^k and ⊥er to the planes ¯¯¯r.(^i+2^j+3^k)=7 & ¯¯¯r.(2^i−3^j+4^k)=0 is
A
¯¯¯r.(17^i+2^j−7^k)=26
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
¯¯¯r.(3^i−2^j+3^k)+2=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
¯¯¯r.(6^i+3^j−4^k)=13
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
¯¯¯r.(17^i+2^j+7^k)=12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B¯¯¯r.(17^i+2^j−7^k)=26 The required plane passes through the point having position vector ¯¯¯a=^i+^j−^k Let normal vector to the plane be ¯¯¯n, then ¯¯¯n is ⊥ler to the normal to the given planes ¯¯¯r⋅(^i+2^j+3^k)=7and¯¯¯r⋅(2^i−3^j+4^k)=0 ∴¯¯¯n=¯¯¯n1ׯ¯¯n2=∣∣
∣∣ijk1232−34∣∣
∣∣=17^i+2^j−7^k ∴(¯¯¯r−¯¯¯a).¯¯¯n=0 ⇒¯¯¯r⋅¯¯¯n=¯¯¯a⋅¯¯¯n ¯¯¯r⋅(17^i+2^j−7^k)=(^i+^j−^k)⋅(17^i+2^j−7^k) ¯¯¯r⋅(17^i+2^j−7^k)=17+2+7=26 Hence choice (A) is correct.