The correct option is
C One root positive and the other negative
√5x2−6x+8−√5x2−6x−7=1squaring both side and we get
(√5x2−6x+8−√5x2−6x−7)2=12
(√5x2−6x+8)2+(√5x2−6x−7)2−2x√(5x2−6x+8)(5x2−6x−7)=1
⇒5x2−6x+8+5x2−6x−7−2√(5x2−6x+8)(5x2−6x−7)=1
⇒10x2−12x+1−2√(5x2−6x+8)(5x2−6x−7)=1
⇒10x2−12x=2√(5x2−6x+8)(5x2−6x−7)
⇒2(5x2−6x)=2√(5x2−6x+8)(5x2−6x−7)
⇒(5x2−6x)=√15x2−6x+8)(5x2−6x−7)
On squaring both side and we get
⇒(5x2−6x)2=(5x2−6x+8)(5x2−6x−7)
⇒25x4+36x2−60x3=25x4−30x3−35x2−30x3+36x2+42x+40x2−48x−56
⇒5x2−6x−56=0
5x2−6x−56=0
5x2−(20−14)x−56=0
5x2−20x+14x−56=0
5x(x−4)+14(x−4)=0
(x−4)(5x+14)=0
x−4=05x+14=0∣∣∣x=4x=−145
One root position and other negative
This is the answer.