The correct option is
A four real & distinct roots
Equation
:(x+2)(x+3)(x+8)(x+12)=4x2
Rearranging,
(x+2)(x+12)(x+3)(x+8)=4x2
or, (x2+14x+24)(x2+11x+24)=4x2
Put y=x2+24 and we get,
(y+14x)(y+11x)=4x2
or, y2+25xy+154x2=4x2
or, y2+25xy+150x2=0
or, (y+10x)(y+15x)=0
Putting back the value of y, we get
(x2+24+10x)(x2+24+15x)=0
or, (x+4)(x+6)(x2+15x+24)=0
∴ The roots are, x=−4,x=−6
Also, x2+15x+24=0
Solving this we get x=−15+√1292 or x=−15−√1292
∴ There are four real and distinct roots