(i).
Let q be the average thermal energy, so
q= 3 2 k b T…… (1)
Here, k b is the Boltzmann constant which is 1.38× 10 −23 m 2 ⋅kg/ K⋅ s 2 and T is the temperature.
The given temperature is 27 °C.
Substitute the value in the above expression.
q= 3 2 ×1.38× 10 −23 ×( 27+273 ) = 3 2 ×1.38× 10 −23 ×300 =6.2× 10 −21 J
Hence, the average thermal energy of helium atom at room temperature is T=6.2× 10 −21 J.
(ii)
The given temperature of surface of Sun is 6000 K.
Substitute the values in equation (1).
q= 3 2 ×1.38× 10 −23 ×6000 =1.24× 10 −19 J
Hence, 1.24× 10 −19 Jis the average thermal energy of helium atom on the surface of Sun at T=6000 K.
(iii).
The given temperature is T= 10 7 K.
Substitute the values in equation (1).
q= 3 2 ×1.38× 10 −23 × 10 7 =2.1× 10 −16 J
Hence, 2.1× 10 −16 Jis the average thermal energy of helium atom at T= 10 7 K.