The correct option is A −14√15ln∣∣∣2√4x2+1−√15x2√4x2+1+√15x∣∣∣+C
I=∫dx(x2+4)√4x2+1
Put x=1t⇒dx=−1t2dt , we get
I=∫−1t2dt(1t2+4)√4t2+1=∫−tdt(1+4t2)√4+t2
Again put, 4+t2=z2⇒tdt=zdz
⇒I=∫−zdz(1+4(z2−4))z
=∫−dz4z2−15=−14∫dzz2−154=−14.1√15ln∣∣∣2z−√152z+√15∣∣∣+C=−14√15ln∣∣
∣∣2(√4+t2)−√152(√4+t2)+√15∣∣
∣∣=−14√15ln∣∣∣2√4x2+1−√15x2√4x2+1+√15x∣∣∣+C