Let t=sinx−cosx⇒dt=(cosx+sinx)dx
∫π40(sinx+cosx)dx9+16(1−(sinx−cosx)2)
=∫π40dt9+16(1−t2)
=∫π40dt9+16−16t2
=∫π40dt25−16t2
=∫π40dt16(2516−t2)
=116∫π40dt(2516−t2)
We know that ∫dxa2−x2=12aln∣∣∣a+xa−x∣∣∣+c
=⎡⎢
⎢
⎢⎣116×12×54ln∣∣
∣
∣
∣∣54+t54−t∣∣
∣
∣
∣∣⎤⎥
⎥
⎥⎦π40
=116×42×5⎡⎢
⎢
⎢⎣ln∣∣
∣
∣
∣∣5+4t45−4t4∣∣
∣
∣
∣∣⎤⎥
⎥
⎥⎦π40
=140⎡⎢
⎢
⎢
⎢⎣ln∣∣
∣
∣
∣∣5+4(sinx−cosx)45−4(sinx−cosx)4∣∣
∣
∣
∣∣⎤⎥
⎥
⎥
⎥⎦π40
=140[ln∣∣∣5+4(sinx−cosx)5−4(sinx−cosx)∣∣∣]π40
=140⎡⎢
⎢
⎢
⎢⎣ln∣∣
∣
∣
∣∣5+4(sinπ4−cosπ4)5−4(sinπ4−cosπ4)∣∣
∣
∣
∣∣−ln∣∣∣5+4(sin0−cos0)5−4(sin0−cos0)∣∣∣⎤⎥
⎥
⎥
⎥⎦
=140[ln∣∣∣5+05−0∣∣∣−ln∣∣∣5+4(−1)5−4(0−1)∣∣∣]
=140[ln1−ln5−45+4]
=140[0−ln19]
=−140ln3−2=240ln3=120ln3