wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evalaute π40sinx+cosx9+16(1(sinxcosx)2)dx

Open in App
Solution

Let t=sinxcosxdt=(cosx+sinx)dx
π40(sinx+cosx)dx9+16(1(sinxcosx)2)
=π40dt9+16(1t2)
=π40dt9+1616t2
=π40dt2516t2
=π40dt16(2516t2)
=116π40dt(2516t2)
We know that dxa2x2=12alna+xax+c
=⎢ ⎢ ⎢116×12×54ln∣ ∣ ∣ ∣54+t54t∣ ∣ ∣ ∣⎥ ⎥ ⎥π40
=116×42×5⎢ ⎢ ⎢ln∣ ∣ ∣ ∣5+4t454t4∣ ∣ ∣ ∣⎥ ⎥ ⎥π40
=140⎢ ⎢ ⎢ ⎢ln∣ ∣ ∣ ∣5+4(sinxcosx)454(sinxcosx)4∣ ∣ ∣ ∣⎥ ⎥ ⎥ ⎥π40
=140[ln5+4(sinxcosx)54(sinxcosx)]π40
=140⎢ ⎢ ⎢ ⎢ln∣ ∣ ∣ ∣5+4(sinπ4cosπ4)54(sinπ4cosπ4)∣ ∣ ∣ ∣ln5+4(sin0cos0)54(sin0cos0)⎥ ⎥ ⎥ ⎥
=140[ln5+050ln5+4(1)54(01)]
=140[ln1ln545+4]
=140[0ln19]
=140ln32=240ln3=120ln3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Piecewise Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon