wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate :0πx1+sin α sin xdx

Open in App
Solution

Let I=0πx1+sinα sinxdxI=0ππ-x1+sinα sinπ- xdx 0afxdx=0afa-xdxI=0ππ1+sinα sinxdx-0πx1+sinα sinxdxI=0ππ1+sinα sinxdx-I2I=0ππ1+sinα sinxdx2I=π0π11+sinα sinxdx

Substituting sinx=2tanx21+tan2x2, we get2I=π0π1+tan2x21+tan2x2+sinα ×2tanx2dxI=π20πsec2x21+tan2x2+sinα ×2tanx2dxLet tanx2=t, dtanx2=dtsec2x2dx=2dtAlso, When x0, ttan0=0When xπ, ttanπ2= I=π202dtt2+2tsinα+1I=π01t+sinα2+cos2αdtI=πcosαtan-1t+sinαcosα0I=πcosαtan-1-tan-1tanαI=πcosαπ2-α

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon