Given,
to evaluate
1.2+2.3+3.4+....+n(n+1)=n3(n+1)(n+2)
Let,
P(n):1.2+2.3+3.4+.....+n(n+1)=n(n+1)(n+2)3
for n=1, we get
L.H.S =n(n+1)=1(1+1)=1(2)=2.
R.H,S =n(n+1)(n+2)3=i(1+1)(1+2)3⇒2×33=2
∴ L.H.S=R.H.S
So, P(n) is true for n=1
Now, let us assume P(n)=P(k)
we get,
P(K):1.2+2.3+3.4+......+k(k+1)−−−−−(1)
=k(k+1)(k+2)3
Let us prove that (k+1) will be true for P(k) so, we get
n=k+1 from eq (1)
L⇒1.2+2.3+3.4+....+(k+1)((k+1)+1)=(k+1)((k+1)+1)((k+1)+2)3
L⇒1.2+2.3+3.4+.....+(k+1)(k+2)=(k+1)(k+2)3
⇒1.2+2.3+3.4+....+k(k+1)+(k+1)(k+2)=(k+1)(k+2)(k+3)3
Now, let us consider P(k)3
we get,
1.2+2.3+3.4+....+k.(k+1)=(k+1)(k+2)3
Now let us add (k+1)(k+2) b/s we get,
1.2+2.3+3.4+....+k(k+1)+(k+1)(k+2)⇒(k+1)(k+2)3+(k+1).(k+2)
Let us consider R.H.S, we get,
⇒k(k+1)(k+2)+3[(k+1)(k+2)]3
⇒k(k+1)(k+2)+3(k+1)(k+2)3
(by taking common)
⇒(k+3)[(k+1)(k+2)]3
⇒(k+1)(k+2)(k+3)3
Therefore, we get P(k) as
1.2+2.3+3.4+.....+k.(k+1)+(k+1)(k+2)=(k+1)(k+2)(k+3)3
∴ for P(k)=0 we get P(k)=0 and ∀P(k)=n we get P(k+1)=n
So, we can say that P(k+1) will be true for P(k) true form.
And from the principle of mathematics induction, P(n) is all true for ′n′, when ′n′ is a natural number.