Evaluate 2sin(π12)
We have, 2sin(π12)
=2sin(π3−π4) [∵π3−π4=4π−3π12=π12]
=2[sin(π3)cos(π4)−cos(π3)sin(π4)] [∵sin(A−B)=sinA×cosB−cosA×sinB]
=2[(√32)(1√2)−(12)(1√2)] [∵sin(π3)=(√32),cos(π4)=(1√2),cos(π3)=(12),sin(π4)=(1√2) ]
=2[(√3−12√2]
=(√3−1√2)