wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate ∣ ∣cosαcosβcos αsin βsin αsinβcosβ0sin αcos βsin αsin βcos α∣ ∣

Open in App
Solution

Given, determinant =∣ ∣cosαcosβcos αsin βsin αsinβcosβ0sin αcos βsin αsin βcos α∣ ∣
Expanding corresponding to R1, we get
=cosαcosβ(cosαcosβ0)cosαsinβ(cosαsinβ0)sinα(sin2βsinαcos2βsinα)=cos2αcos2β+cos2αsin2β+sin2α(sin2β+cos2β)=cos2α(cos2β+sin2β)+sin2α(sin2β+cos2β)=cos2α(cos2β+sin2β)+sin2α(sin2β+cos2β)=cos2α(1)+sin2α(1)=cos2α+sin2α=1 [sin2θ+cos2θ=1]


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon