Evaluate ∣∣ ∣∣cosαcosβcos αsin β−sin α−sinβcosβ0sin αcos βsin αsin βcos α∣∣ ∣∣
Given, determinant =∣∣
∣∣cosαcosβcos αsin β−sin α−sinβcosβ0sin αcos βsin αsin βcos α∣∣
∣∣
Expanding corresponding to R1, we get
=cosαcosβ(cosαcosβ−0)−cosαsinβ(−cosαsinβ−0)−sinα(−sin2βsinα−cos2βsinα)=cos2αcos2β+cos2αsin2β+sin2α(sin2β+cos2β)=cos2α(cos2β+sin2β)+sin2α(sin2β+cos2β)=cos2α(cos2β+sin2β)+sin2α(sin2β+cos2β)=cos2α(1)+sin2α(1)=cos2α+sin2α=1 [∵sin2θ+cos2θ=1]