The correct option is B k(a−b)(b−c)(c−a)
Let A=∣∣
∣
∣∣kak2+a21kbk2+b21kck2+c21∣∣
∣
∣∣
So, by row transformation
r1→r1−r2 and r3→r3−r2
So, A=∣∣
∣
∣∣k(a−b)(a2−b2)0kbk2+b21k(c−b)c2−b20∣∣
∣
∣∣
=−1[k(a−b)(c2−b2)−k(c−b)(a2−b2)]
=k(a−b)[b2−c2−(b−c)(a+b)]
=k(a−b)[(b−c)(c−a)]