wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate by using properies of definite integrals π0xdxa2cos2x+b2sin2x

Open in App
Solution

I=π0xa2cos2x+b2sin2xdx
I=π0πxa2cos2x+b2sin2xdx
Adding above two equations I+I=π0xa2cos2x+b2sin2xdx+π0πxa2cos2x+b2sin2xdx
2I=π0πa2cos2x+b2sin2xdx
2I=π0πa2cos2x+b2sin2xdx
I=π2π2sec2xa2+b2tan2x
Now, let tan x = t
Therefore,
sec2xdx=dt
I=2π20dta2+b2t2
I=πb20dt(ab)2+t2
I=πb2×ba[tan1atb]0
I=πab×π2
I=π22ab

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon