The correct option is
C −√54We know that;
cos72∘=sin(90∘−72∘)=sin18∘=−1+√54
sin54∘=cos(90∘−54∘)=cos36∘=√5+14
Therefore,
⇒cos272∘−sin254∘
⇒sin218∘−cos236∘
⇒(−1+√54)2−(√5+14)2
⇒(1+5−2√516)−(5+1+2√516)
⇒(6−2√5−6−2√516)
⇒(−4√516)
⇒(−√54)
Hence, the value of cos272∘−sin254∘ is −√54.