wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate 1220111006k=0(1)k 3k 2012C2k
(correct answer + 5, wrong answer 0)

Open in App
Solution

Consider the complex number ω=cosπ3+isinπ3.
Using the binomial theorem,
Re(ω2012)=Re(cosπ3+isinπ3)2012
=Re(12+i32)2012
=(12)20122012C2(12)2010(322)+2012C4(12)2008(3224)++(3100622012)
=122012[13(2012C2)+32(2012C4)++31006(2012C2012)]

On the other hand, using De Moivre's theorem,
Re(ω2012)=Re(cos2012π3+isin2012π3)=cos2012π3=12
Thus, 122012[13(2012C2)+32(2012C4)+31006(2012C2012)]=12
122011[13(2012C2)+32(2012C4)+31006(2012C2012)]=1

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
De-Moivre's Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon