Consider the complex number ω=cosπ3+isinπ3.
Using the binomial theorem,
Re(ω2012)=Re(cosπ3+isinπ3)2012
=Re(12+i√32)2012
=(12)2012−2012C2(12)2010(322)+2012C4(12)2008(3224)+⋯+(3100622012)
=122012[1−3(2012C2)+32(2012C4)+⋯+31006(2012C2012)]
On the other hand, using De Moivre's theorem,
Re(ω2012)=Re(cos2012π3+isin2012π3)=cos2012π3=−12
Thus, 122012[1−3(2012C2)+32(2012C4)−⋯+31006(2012C2012)]=−12
∴−122011[1−3(2012C2)+32(2012C4)−⋯+31006(2012C2012)]=1