We have,
y=exsinx(x2+2)3
y=exsinx(x2+2)−3
Applying formula
ddx(I.II.III)=I.IIddxIII+I.IIIddxII+II.IIIddxI
Now,
dydx=exsinxddx(x2+2)−3+ex(x2+2)ddxsinx−3+sinx(x2+2)ddxex
=exsinx(−3)(x2+2)−4(2x)+ex(x2+2)cosx+sinx(x2+2)ex
=−6xexsinx(x2+2)−4+ex(x2+2)cosx+sinx(x2+2)ex
Hence, this is the answer.