∫dxx√x4−1=∫xdxx2√x4−1
Substituting x2=secθ where θ∈(0,π2),
⇒2xdx=secθtanθdθ
=12∫secθtanθdθsecθ√sec2θ−1
=12∫tanθdθ√tan2θ
=12∫tanθ|tanθ|dθ
=12∫tanθtanθdθ=12∫1⋅dθ
[∵θ∈(0,π2)]
=θ2+c
=12sec−1x2+c [∵x2=secθ]
where c is constant of integration
Hence, the required integration is 12sec−1x2+c