wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate :
dydx=x+y+12x+2y+3

Open in App
Solution

dydx=x+y+12x+2y+3

Let x+y=z

1+dydx=dzdx
dydx=dzdx1

dzdx1=z+12z+3dzdx=z+12z+3+1=3z+42z+3
(2z+33z+4)dz=dx

(2z3z+4+33z+4)dz=dx
{23(3z+443z+4)+33z+4}dz=dx

23dz+13(13z+4)dz=dx
Integrating both sides we get
23z+19log(3z+4)=x+c

23(x+y)+19log(3x+3y+4)=x+c

23y13x+19log(3x+3y+4)=c.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon