wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate:
dydx=y+x2+y2x

Open in App
Solution

dydx=y+x2+y2x
x.dydx=y+x2+y2
so Let y=vx
dydx=v+xdvdx
x[v+xdvdx]=vx+x2+v2x2
=vx+x1+v2
x[v+x.dvdx]=x[v+1+v2]
v+xdvdx=v+1+v2
dv1+v2=dxx+logc
=logx+logn c
=log(cx)
Let v=tanθ
dv=sec2θ.dθ
sec2θ.dθ1+tan2θ=secθ.dθ
log(secθ+tanθ)
=log(cx)
secθ+tanθ=cx
or tanθ+1+tan2θ=cx
v+1+v2=cx
vx+x1+v2=cx2
y+x2+v2x2=cx2
y+x2+y2=cx2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon