dydx=y+√x2+y2x
x.dydx=y+√x2+y2
so Let y=vx
dydx=v+xdvdx
x[v+xdvdx]=vx+√x2+v2x2
=vx+x√1+v2
x[v+x.dvdx]=x[v+√1+v2]
v+xdvdx=v+√1+v2
∫dv√1+v2=∫dxx+logc
=logx+logn c
=log(cx)
Let v=tanθ
dv=sec2θ.dθ
∫sec2θ.dθ√1+tan2θ=∫secθ.dθ
log(secθ+tanθ)
=log(cx)
secθ+tanθ=cx
or tanθ+√1+tan2θ=cx
v+√1+v2=cx
vx+x√1+v2=cx2
y+√x2+v2x2=cx2
y+√x2+y2=cx2