∫10cot−1(1−x+x2)dx⇒∫1011−x+x2dx∫10tan−111−x(1−x)dx⇒∫10tan−1x+(1−x)1−x(1−x)[tan−1(a+b1−ab)=tan−1a+tan−1b]∫10tan−1xdx+∫10tan−1(1−x)dx[∫baf(x)dx=∫baf(a+b+x)dx]∫10tan−1xdx+∫10tan−1xdx2∫101tan−1xdx[unsingbyparts]2[tan−1x⋅x−∫x1+x2dx]⎡⎢
⎢
⎢
⎢⎣let1+x2=tdifference=2xdx=dtxdx=dt2⎤⎥
⎥
⎥
⎥⎦2[x⋅tan−1x−12∫dtt]2[xtan−1x−12logt]2[xtan−1x−12log(1+x2)]102[π4−12log√2]=π2−log√2