wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: 1011+2x+2x2+2x3+x4dx

Open in App
Solution

10dx1+2x+2x2+2x3+x4
=10dx(1+x2)(1+2x+x2)
=10dx(1+x2)(1+x)2
=10Ax dx(1+x2) +10B dx(1+x) +10C dx(1+x)2 {Let]........(1).
Then comparing both sides we get,
1=Ax(1+x)2+B(1+x2)(1+x)+C(1+x2).......(2).
Putting x=1 in (2) we get,
1=2CC=12.
Putting x=i in (2) we get [where i=1]
1=i.(2i)A [Since (1+i)2=2i]
or, A=12
Putting x=0 in (2) we get,
1=B+C
or, B=12 [Using value of C]
Now, from (1) using values of A, B and C we get,
10dx1+2x+2x2+2x3+x4
=1012x dx(1+x2) +1012 dx(1+x) +1012 dx(1+x)2
=14 [log(1+x2)]10+12 [log(1+x)]1012[1(1+x)]10
=14log(2)+12 log(2)12[112]
=14log(2)+ 14.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon