1∫0dx1+2x+2x2+2x3+x4
=1∫0dx(1+x2)(1+2x+x2)
=1∫0dx(1+x2)(1+x)2
=1∫0Ax dx(1+x2) +1∫0B dx(1+x) +1∫0C dx(1+x)2 {Let]........(1).
Then comparing both sides we get,
1=Ax(1+x)2+B(1+x2)(1+x)+C(1+x2).......(2).
Putting x=−1 in (2) we get,
1=2C⇒C=12.
Putting x=i in (2) we get [where i=√−1]
1=i.(2i)A [Since (1+i)2=2i]
or, A=−12
Putting x=0 in (2) we get,
1=B+C
or, B=12 [Using value of C]
Now, from (1) using values of A, B and C we get,
1∫0dx1+2x+2x2+2x3+x4
=1∫0−12x dx(1+x2) +1∫012 dx(1+x) +1∫012 dx(1+x)2
=−14 [log(1+x2)]10+12 [log(1+x)]10−12[1(1+x)]10
=−14log(2)+12 log(2)−12[1−12]
=14log(2)+ 14.