Let I=∫10dxx+√1−x2
Put x=sinθ
dx=cosθdθ
x=0⇒θ=0
x=1⇒θ=π/2
Therefore, I=∫π/20cosθdθsinθ+√1−sin2θ
I=∫π/20cosθdθsinθ+cosθ ....(i)
I=∫π/20cos(π/2−θ)dθsin(π/2−θ)+cos(π/2−θ) (Using property ∫0af(x)dx=∫a0f(a−x)dx)
I=∫π/20sinθdθcosθ+sinθ .... (ii)
Adding (i) and (ii), we get
2I=∫π/20(sinθ+cosθ)sinθ+cosθ)dθ
=∫π/20dθ
=[θ]π/20
=π2
∴I=π4