Let I=∫10log[√1−x+√1+x]dx
=[xlog{√(1−x)+√(1+x)}]10−∫10x.1√(1−x)+√(1+x).{−12√(1−x)+12√(1+x)}dx
=log√2−∫10x2√(1−x2)√(1−x)−√(1+x)√(1−x)+√(1+x)dx
Rationalize
=log√2−∫10x2√(1−x2)[√(1−x)−√(1+x)]2(1−x)−(1+x)dx
=log√2−∫10x2√(1−x2).(1−x)+(1+x)−2√(1−x2)−2xdx
=log√2+∫1014√(1−x2){2−2√(1−x2)}dx
=log√2+12[sin−1x−x]10=log√2+12[π2−1]=12log2+π4−12