We have,
∫10tan(2x−11+x−x2)dx
Let
1+x−x2=t
⇒0+1−2x=dtdx
⇒(1−2x)dx=dt
⇒−(2x−1)dx=dt
Change limit
If x=0 then,
t=1+x−x2
t=1+0−02
t=1
If x=1 then,
1+x−x2=t
⇒1+1−12=t
⇒t=1
Now,
∫11tan1tdt
On integrating and we get,
⇒[logsect]11
⇒[logsec1−logsec1]
⇒0
Hence, this is the
answer.