Let I=∫10e2−3xdx
It is known that,
∫baf(x)dx=(b−a)limn→∞1n[f(a)+f(a+h)+...+f(a+(n−1)h]
Where, h=b−an
Here, a=0,b=1, and f(x)=e2−3x
⇒h=1−0n=1n
∴∫10e2−3xdx=(1−0)limn→∞1n[f(0)+f(0+h)+...+f(0+(n−1)h)]
=limn→∞1n[e2+e2−3h+....e2−3(n−1)h]
=limn→∞1n[e2{1+e−3h+e−6h+e−9h+...e−3(n−1)h}]
=limn→∞1n[e2{1−(e−3h)n1−(e−3h)}]
=limn→∞1n[e2{1−e−3n×n1−e−3n}]
=limn→∞1n⎡⎣e2(1−e−3)1−e−34⎤⎦
=e2(e−3−1)limn→∞1n[1e−3n−1]
=e2(e−3−1)limn→∞(−13)[−3ne−3n−1]
=−e2(e−3−1)3limn→∞[−3ne−3n−1]
=−e2(e−3−1)3(1)[limn→∞xex−1]
=−e−1+e23
=13(e2−1e)