∫ba=limh→0h[f(a)+f(a+n)+f(a+2n)+...+f(a+(n−1)n)]
f(x)=ex
f(a)=ea
f(a+n)=ea+n
f(a+(n−1)h)=ea+(n−1)h
limh→0h[ea+ea+n+ea+2n+...+ea+(n−1)h]
=limh→0h[ea(1+eh+....+e(n−1)h]
=limh→0hea1.(eh)n−1en−1
=ea(limh→0enh−1)limh→0(eh−1)h
=ealimh→0(enh−1) ∴h=(b−a)
∫baexdx=ea(eb−a−1)=eb−ea
∫20exdx=e2−e0=e2−1