wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate 20exdx as the limit of a sum.

Open in App
Solution

ba=limh0h[f(a)+f(a+n)+f(a+2n)+...+f(a+(n1)n)]
f(x)=ex
f(a)=ea
f(a+n)=ea+n
f(a+(n1)h)=ea+(n1)h
limh0h[ea+ea+n+ea+2n+...+ea+(n1)h]
=limh0h[ea(1+eh+....+e(n1)h]
=limh0hea1.(eh)n1en1
=ea(limh0enh1)limh0(eh1)h
=ealimh0(enh1) h=(ba)
baexdx=ea(eba1)=ebea
20exdx=e2e0=e21

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon