We have,
I=∫2π0excos(π4+x2)dx
Using Identity
cos(A+B)=cosAcosB−sinAsinB
Now,
I=∫2π0ex(cosxcosπ4−sinxsinπ4)dx
=∫2π0ex(1√2cosx−1√2sinx)dx
Now, let f(x)=cosx√2 then,f′(x)=−sinx√2
Applying property,
∫{ex(f(x)+f′(x))}dx=exf(x)
Now, we get,
I=[excosx√2]02π
I=[e2πcos2π√2−e0cos0√2]
I=[e2π×1√2−1×1√2]
I=e2π−1√2
Hence, this is the
answer.