wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate
2π0ex.sin(π4+x2)dx

Open in App
Solution

We have,

I=2π0excos(π4+x2)dx

Using Identity

cos(A+B)=cosAcosBsinAsinB

Now,

I=2π0ex(cosxcosπ4sinxsinπ4)dx

=2π0ex(12cosx12sinx)dx

Now, let f(x)=cosx2 then,f(x)=sinx2

Applying property,

{ex(f(x)+f(x))}dx=exf(x)

Now, we get,

I=[excosx2]02π

I=[e2πcos2π2e0cos02]

I=[e2π×121×12]

I=e2π12

Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Irrational Algebraic Fractions - 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon