Evaluate ∫2π0xsin2nxsin2nx+cos2nxdx, for n>0,
I=∫2π0xsin2nxsin2nx+cos2nxdx
⇒I=∫2π0(2π−x)sin2nxsin2nx+cos2nxdx
.
Hence 2I=∫2π02πsin2nxsin2nx+cos2nxdx
⇒I=π∫2π0sin2nxsin2nx+cos2nxdx
⇒I=π×2∫π0sin2nxsin2nx+cos2nxdx (∵ the given function is periodic with period π)
Substitute t=π2−x
⇒dt=−dx
⇒I=2π∫−π/2π/2cos2ntsin2nt+cos2nt(−dt)
⇒I=2π∫π/2−π/2cos2nxsin2nx+cos2nxdx
⇒I=4π∫π/20cos2nxsin2nx+cos2nxdx......(1) (∵f(x) is an even function)
⇒I=4π∫π/20sin2nxsin2nx+cos2nxdx.....(2) (replacing f(x) by f(π2−x))
Adding (1) and (2), we get
2I=4π∫π/201.dx
⇒I=2π×π2=π2