∫2π0xsin2(x)cos2(x)dx
apply integration by parts,
∫u.v dx=u∫v dx −∫(dudx∫v dx)dx
u=x,v=sin2xcos2x
=[132(x(4x−sin(4x))−32⋅∫18(x−14sin(4x))dx)]2π0
=[132(x(4x−sin(4x))−32⋅18(x22+116cos(4x)))]2π0
upon simplification, we get,
=[1128(8x2−4xsin(4x)−cos(4x))]2π0
computing the boundaries, we get,
=π24