Let t=(x+2)2⇒dt=2(x+2)dx
When x=0⇒t=4 and when x=2⇒t=16
∫20(x+2−2)√x+2dx
=∫20(x+2)√x+2dx−2∫20√x+2dx
=12∫164√tdt−2∫20√x+2dx
=12⎡⎢
⎢
⎢⎣t12+112+1⎤⎥
⎥
⎥⎦164−2⎡⎢
⎢
⎢⎣(x+2)12+112+1⎤⎥
⎥
⎥⎦20
=13[t32]164−2×23[(x+2)32]20
=12[1632−432]−43[(2+2)32−(0+2)32]
=12[64−8]−43[8−2√2]
=28−323+8√23
=52+8√23