The correct option is D 9πa72048
Given , ∫a0x3(ax−x2)3/2dx
Substitute x=asin2t. ⇒ dx=2asintcostdt
⇒ ∫π20(asin2t)3(a(asin2t)−(asin2t)2)3/2(2asintcostdt)
⇒ ∫π20(a6sin9tcos3t)(2asintcostdt) , since (1−sin2t)=cos2t
⇒ ∫π20(2a7sin10tcos4t)dt
Since ,∫π20(sinmtcosnt)dt=(m−1)(m−3)......×(n−1)(n−3)(n−5).......(m+n−1)(m+n−2)(m+n−4)..........×π2 if m and n are both even.
And here m=10 and n=4 So, we have
∫π20(2a7sin10tcos4t)dt=9a7π2048 as our answer.