wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate π20sinx1+cosx+sinxdx

Open in App
Solution

Apply substitution u= tanx2
=2u(u+1)(1+u2)du=2u(u+1)(1+u2)du=2u+12(u2+1)12(u+1)du=2(u+12(u2+1)du12(u+1)du)u+1u2+1=uu2+1+1u2+1uu2+1du=12lnu2+11u2+1du=arctan(u)=2(12(12lnu2+1+arctan(u))12ln|u+1|)u=tan(x2)=2(12(12lntan2(x2)+1+arctan(tan(x2)))12lntan(x2)+1)=12ln(sec2(x2))+arctan(tan(x2))lntan(x2)+1
Computing the boundaries
π20sin(x)1+cos(x)+sin(x)dx=12ln(2)+π40=π412ln(2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Ozone Layer
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon