Let I=π/2∫0sinxcosxsin4x+cos4xdx
I=π/2∫0sinxcosxcos4xsin4xcos4x+cos4xcos4xdx
=π/2∫0sinxcos3xtan4x+1dx
=π/2∫0tanxsec2xtan4x+1dx
Put tan2x=u, then, 2tanxsec2xdx=du.
I=12π/2∫0duu2+1
=12[tan−1u]π/20
=12[tan−1(tan2x)]π/20
=12[tan−1(tan2π2)−tan−1(tan20)]
=12[tan−1(∞)−tan−1(0)]
=12[π2−0]
=π4