wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: π40(sinx+cosx)9+16sin2xdx

Open in App
Solution

Let cosx+sinx=t(sinx+cosx)dx=dt
cos2x+sin2x2sinxcosx=t2
1sin2x=t2sin2x=1t2
when x=0,t=cos0+sin0=1
x=π4,t=cosπ4+sinπ4=12+12=0
π/40(sinx+cosx)(9+16sin2x)dx=01dt9+16(1t)2
=01⎜ ⎜ ⎜dt251616t2⎟ ⎟ ⎟116=11601dt(54)2t2
=11601⎜ ⎜ ⎜ ⎜dt(54t)(54+t)⎟ ⎟ ⎟ ⎟11601⎜ ⎜ ⎜154+t+154t⎟ ⎟ ⎟12(54)dt
=116.2501154+t+154tdt
=140[ln(54+t)ln(54t)]01
=140ln⎜ ⎜ ⎜54+t54t⎟ ⎟ ⎟01=140⎢ ⎢ ⎢ ⎢ln(5/45/4)ln⎜ ⎜ ⎜ ⎜(541)54+1⎟ ⎟ ⎟ ⎟⎥ ⎥ ⎥ ⎥
=140[ln1ln(1/49/4)]=140ln(19)
=140[ln(3)2]=240ln3=120ln3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon