The correct option is C 120(log3)
Let I=∫π40sinx+cosx9+16{1−(sinx−cosx)2}dx
∴I=∫π40sinx+cosx25−16(sinx−cosx)2dx,
Substitute 4(sinx−cosx)=t⟹4(cosx+sinx)dx=dt
14∫0−4dt25−t2
I=14.12(5)(log∣∣∣5−t5+t∣∣∣)0−4
=140[log∣∣∣5−05+0∣∣∣−log∣∣∣5+45−4∣∣∣]
=140[log1−log(19)], (where log1=0)
=140[log9]=240log3=120(log3)