The correct option is B 772π2
Let I=∫√3011+x2sin−1(2x1+x2)dx
Now sin−1(2x1+x2)={2tan−1x,if−1≤x≤1π−2tan−1x,ifx>1
I=∫1011+x2sin−1(2x1+x2)dx+∫√3111+x2sin−1(2x1+x2)dx
=∫102tan−1x1+x2dx+∫√31π−2tan−1x1+x2dx
=2∫10tan−1x1+x2dx+π∫√3111+x2dx−2∫√31tan−1x1+x2dx
=2∫π40tdt+π(tan−1x)√31−2∫π3π4tdt
=2(t22)π40+π{tan−1√3−tan−11}−2(t22)π3π4
=π216+π{π3−π4}−{π29−π216}=772π2
Hence, option 'C' is correct.