∫π20cos3xdx
=14∫π204cos3xdx
We know that cos3x=4cos3x−3cosx⇒4cos3x=3cosx+cos3x
=14∫π20(3cosx+cos3x)dx
=14∫π203cosxdx+14∫π20cos3xdx
=34∫π20cosxdx+14∫π20cos3xdx
=34[sinx]π20+14[sin3x3]π20
=34[sinπ2−sin0]+112[sin3π2−sin0]
=34[1−0]+112[sin(π+π2)−0]
=34+112[−sinπ2−0]
=34−112[1−0]
=34−112
=3×34×3−112
=912−112
=812=23